Aedes aegypti

not annotated - annotated - LINNAEUS only

20958808

The RNA-Seq approach to studying the expression of mosquito mitochondrial genes.

In this study, we used extensive expressed sequence tag evidence obtained through 454 and Solexa next-generation sequencing to explore mtDNA transcription in male and female first instar larvae of Aedes aegypti and adults of Aedes aegypti, Anopheles gambiae, and Anopheles quadrimaculatus. Relative abundances of individual transcripts differed considerably within each sample, consistent with the differential stability of messenger RNA species. Large differences were also observed between species and between larval and adult stages; however, the male and female larval samples were remarkably similar. Quantitative PCR analysis of selected genes, cox1, l-rRNA and nd5, in larvae and adults of Ae. aegypti and in An. gambiae adults was consistent with the RNA-Seq-based quantification of expression. Finally, the absence of a conserved mtDNA region involved in transcriptional control in other dipterans suggests that mosquitoes have evolved a distinct mechanism of regulation of gene expression in the mitochondrion.

21114562

Improved accuracy of the transcriptional profiling method of age grading in Aedes aegypti mosquitoes under laboratory and semi-field cage conditions and in the presence of Wolbachia infection.

Transcriptional profiling is an effective method of predicting age in the mosquito Aedes aegypti in the laboratory, however, its effectiveness is limited to younger mosquitoes. To address this we used a microarray to identify new gene candidates that show significant expression changes in older mosquitoes. These genes were then used to create a revised model, which upon evaluation in both laboratory and semi-field conditions, proved to have improved accuracy overall and for older mosquitoes. In association with the development of symbiont-based control strategies for Ae. aegypti, we also tested the model's accuracy for Wolbachia-infected mosquitoes and found no decline in performance. Our findings suggest that the new model is a robust and powerful tool for age determination in Australian Ae. aegypti populations.

21496127

A role for endosomal proteins in alphavirus dissemination in mosquitoes.

Little is known about endosomal pathway proteins involved in arthropod-borne virus (arbovirus) assembly and cell-to-cell spread in vector mosquitoes. UNC93A and synaptic vesicle-2 (SV2) proteins are involved in intracellular transport in mammals. They show amino acid sequence conservation from mosquitoes to humans, and their transcripts are highly enriched in Aedes aegypti during arbovirus infection. Transient gene silencing of SV2 or UNC93A in mosquitoes infected with the recombinant alphavirus Sindbis MRE16-enhanced green fluorescent protein (SINV; family Togaviridae) resulted in the accumulation of viral positive- and negative-strand RNA, congregation of virus envelope antigen in intracellular networks, and reduced virus dissemination outside of the midgut. Further, UNC93A silencing, but not SV2 silencing, resulted in a 10-fold reduction in viral titres at 4 days post-infection. Together, these data support a role for UNC93A and SV2 in virus assembly or budding. Cis-regulatory elements (CREs) were identified at the 5'-ends of genes from the original data set in which SV2 and UNC93A were identified. Common CREs at the 5'-end genomic regions of a subset of enriched transcripts support the hypothesis that UNC93A transcription may be co-regulated with that of other ion transport and endosomal trafficking proteins.

21668550

Compatible interaction with its rice host leads to enhanced expression of the gamma subunit of oligosaccharyl transferase in the Asian rice gall midge, Orseolia oryzae.

The Asian rice gall midge, Orseolia oryzae, is a fast evolving, damaging pest of rice. Understanding the underlying molecular mechanism of interaction between the gall midge and rice will help in devising strategies to control and manage the pest. The present study aims to identify rice-responsive genes in the gall midge that aid pest survival. The abundance of transcripts coding for enzymes related to glycosylation, in a cDNA library prepared from maggots of the rice gall midge feeding on susceptible hosts, indicated their probable involvement in the gall midge-rice interaction. Hence, a full-length transcript for a gamma subunit of the oligosaccharyl transferase gene (OoOST) from the gall midge was cloned and characterized. It has 72% similarity to its orthologue cloned from Aedes aegypti. Tissue-specific analysis of the expression of OoOST revealed an increase (> sevenfold) in the transcripts of the gene in the salivary glands of maggots in susceptible plants when compared with the transcript level in the salivary glands of maggots feeding on resistant hosts. Using quantitative PCR, performed on different developmental stages of the maggots in two susceptible and two resistant hosts, we observed similar expression patterns (i.e. overexpression in the compatible interaction). These results indicate the involvement of OoOST in maggot survival and establishment in the susceptible host. In order to identify polymorphism in the gene, OoOST was cloned from three gall midge biotypes GMB1, GMB4 and GMB4M.

21699593

Comparison of transgene expression in Aedes aegypti generated by mariner Mos1 transposition and PhiC31 site-directed recombination.

Transgenic mosquitoes generated by transposable elements (TEs) often poorly express transgenes owing to position effects. To avoid these effects, the PhiC31 site-directed recombination system was used to insert transgenes into a locus favourable for gene expression in Aedes aegypti. We describe phenotypes of mariner Mos1 TE and PhiC31 transgenic mosquitoes expressing the enhanced green fluorescent protein (EGFP) reporter in midguts of blood-fed females. Mosquitoes of nine TE-generated lines [estimated transformation frequency (TF): 9.3%] clearly expressed the eye-specific selection marker but only 2/9 lines robustly expressed the EGFP reporter. The piggyBac TE-generated PhiC31 docking strain, attP26, supported recombination with attB site containing donors at an estimated TF of 1.7-4.9%. Using a codon-optimized PhiC31 integrase mutant instead of the 'wild-type' enzyme did not affect TF. Site-directed recombination of line attP26 with an attB-containing donor expressing EGFP from the Ae. aegypti carboxypeptidase promoter produced one transgenic line with blood-fed females expressing the reporter in midgut tissue. Docking strain attP26 also supported robust expression of Flock House virus B2 from the Ae. aegypti polyubiquitin promoter. Our data confirm that eye-specific selection marker expression alone is not a reliable indicator for robust gene-of-interest expression in Ae. aegypti and that the PhiC31 system can ensure predictable transgene expression in this mosquito species.

21699592

Characterization of the oxysterol-binding protein gene family in the yellow fever mosquito, Aedes aegypti.

The oxysterol-binding protein (OSBP) and OSBP-related proteins (ORPs) are sterol-binding proteins that may be involved in cellular sterol transportation, sterol metabolism and signal transduction pathways. Four ORP genes were cloned from Aedes aegypti. Based on amino acid sequence homology to human proteins, they are AeOSBP, AeORP1, AeORP8 and AeORP9. Splicing variants of AeOSBP and AeORP8 were identified. The temporal and spatial transcription patterns of members of the AeOSBP gene family through developmental stages and the gonotrophic cycle were profiled. AeORP1 transcription seemed to be head tissue-specific, whereas AeOSBP and AeORP9 expression was induced by a bloodmeal. Furthermore, over-expression of AeORPs facilitated [(3)H]-cholesterol uptake in Ae. aegypti cultured Aag -2 cells.